SMART MARITIME

$\square NTNU \quad \textcircled{O} SINTEF$

PERSPECTIVES ON MARITIME FUELS AND CLIMATE CHANGE MITIGATION

Anders H. Strømman, NTNU June 20, 2023 - Trondheim

The MariTEAM model reproduces very well the AER distribution across all segments at an aggregate level

Key assumptions for this prospective analysis

Technologies as of 2017

- HFO: Sulphur content 2.6%
- MGO
- LNG: Low-pressure

Technologies that could become available in the period between now and 2030

- HFO: Sulphur content 0.5%
- MGO
- LNG: Low and High-pressure
- Fossil Methanol
- Ammonia (blue): from Natural Gas (production on-site) with CCS (95%), ATR H2, and biofuel as pilot fuel with conservative N₂O emissions
- Ammonia (green): Electrolysis (wind energy) and biofuel as pilot fuel with low N₂O emissions

SINTER

- CCS: ~60% with FC increase of 10%
- Scrubbers: -98% SO₂ (Comer et al., 2020)

ATTENTION: Without NOx

Sulphur content limit down to 0.5% (IMO2020)

HFO		LNG LP	LNG HP	Methanol	Ammonia-C-blue	monia-L-green	CS+SCRB	MGO+CCS
Bulk ca	rriers							
				GW	/P100			

Individual with breakdown of contributions

Aggregate result for comparison of different cases

DNTNU

OSINTEF

Changes in most species lead to an increase in CO2eq

HFO	MGO	LNG LP	LNG HP	Methanol	Ammonia-C-blue	monia-L-green	CS+SCRB	MGO+CCS
Bulk ca	arriers							
				GWI	P100			

Individual with breakdown of contributions

Aggregate result for comparison of different cases

OSINTEF

NTNU

Methane nearly offsets CO2 reductions

HFO		LNG LP LN	NG HP	Methanol	Ammonia-C-blue	Am	monia-L-green	CS+SCRB	MGO+CCS
Bulk ca	arriers			tainer ships					
				GWF	P100				

Individual with breakdown of contributions

Aggregate result for comparison of different cases

DNTNU

OSINTEF

Lower Methane slip and improved thermal efficiency

HFO		LNG LP LN	G HP Methanol	Ammonia-C-blue	Ammonia-L-green	HFO+CCS+SCRB	MGO+CCS
Bulk ca	arriers						
			GW	/P100			100

Individual with breakdown of contributions

Aggregate result for comparison of different cases

OSINTEF

(Fossil) Methanol within range of conventional fuels

HFO		LNG LP	LNG HP	Methanol	Ammonia-C-blue	Ammonia-L-green	CS+SCRB	MGO+CCS
Bulk ca	arriers							
				GWI	P100			00

Individual with breakdown of contributions

Aggregate result for comparison of different cases

OSINTEF

ATR H2 - NG With CCS upstream and conservative N₂O emissions levels

HFO		LNG LP	LNG HP	Methanol	Ammonia-C-blue	Ammonia-L-green	CS+SCRB	MGO+CCS
Bulk c	arriers							
				GV	VP100			100

Individual with breakdown of contributions

Aggregate result for comparison of different cases

OSINTEF

Wind Based Green ammonia and optimistic N_2O from combustion.

		LNG LP	G HP	Methanol	Ammonia-C-b	lue An	nmonia-L-green	S+SCRB	MGO+CCS
Bulk ca	rriers								
				GW	/P100				100

Individual with breakdown of contributions

Aggregate result for comparison of different cases

OSINTEF

NTNU

HFO with CCS

HFO		LNG LP	LNG HP	Methanol	Ammonia-C-blue	Ammonia-L-green	HFO+CCS+SCRB	MGO+CCS
Bulk ca	arriers							
				GWI	P100			

Individual with breakdown of contributions

Aggregate result for comparison of different cases

ONTNU () SINTEF

Alternative fuels across size segments.

HFO	MGO	LNG LP	LNG HP	Methanol	Ammonia-C-blue	Ammonia-L-green	S+SCRB	MGO+CCS
Bulk ca	arriers							
				GWF	P100			

Individual with breakdown of contributions

Aggregate result for comparison of different cases

DNTNU

OSINTEF

How much fuel will we need?

Shared Socio-Economic Pathways

Shared Socio-Economic Pathways Gravity Modelling : Growth in Trade

SINTEF

Simulation of geospatial distribution of shipping emissions – GDP Based demand Growth.

Shared Socio-Economic Pathways Gravity Modelling : Fuel Demand

OSINTEF

Shipping will not transform in isolation

S

Key Insights from Global Energy Scenarios

SI

In 2019 shipping constituted 10-11% of the final consumption of energy in the transport sector

Reducing GHG emissions across the full energy sector requires major transitions. This includes a substantial reduction in overall fossil fuel use, the deployment of low-emission energy sources, switching to alternative energy carriers, and energy efficiency and conservation

Shares of Low Carbon Energy

IPCC WG3 AR6 Figure 6.30

Global average annual investments from 2023 to 2052 (undiscounted, in USD billion yr 1)

C2: return warming to 1.5° C (>50%) after a high overshoot

C3: limit warming to 2°C (>67%)

IPCC WG3 AR6 Figure 6.33

Example of Net –Zero Energy system

SINTEF

Final Energy CO₂ Emissions Carbon Intensity 1.25-3. 2.0 1.00 Category Ŧ Ţ ÷ C8: Above 4.0°C п Ш Ⅱ 1.5-Index (2019 = 0.75 Index (2019 Below 4.0°C Index (2019 Below 3.0°C Below 2.5°C Selow 2°C Likely below 2°C C with high OS 0.5 0.25-Below 1.5°C with no or low OS 0.0 0.00-2030 2050 2100 2050 2100 2030 2050 2100 2030 Year Year Year Share of Electricity Share of Hydrogen Share of Biofuels 50 60 60 40 % of final energy of final energy % of final energy »²⁰ 10 0 2100 2100 2030 2050 2030 2050 2100 2030 2050 Year Year Year RITIME **SINTEF** FIG 3.25 SPM C.8 **D**NDNU

Sustainable biofuels, low emissions hydrogen and derivatives (including synthetic fuels), can support mitigating of CO2 emissions from shipping and aviation, and heavy-duty land transport

Earth System Modeling

SO2 concentration in the atmospheric bottom layer due to direct emissions from the global fleet in 2019.

MariTeam

Thank you for the attention!

O

SIN

ONTR

S MariTeam

ONTNU 🕥 SINTEF

Back up Slides

ATTENTION: with NOx

Sulphur content limit down to 0.5% (IMO2020)

HFO		LNG LP	LNG HP	Methanol	Ammonia-C-blue	Am	imonia-L-green	CS+SCRB	MGO+CCS
Bulk ca	arriers			ntainer ships					
				GW	'P100				

Individual with breakdown of contributions

Aggregate result for comparison of different cases

DNTNU

OSINTEF

Changes in many species lead to an increase in CO2eq

HFO	MGO	LNG LP	LNG HP	Methanol	Ammonia-C-blue	Am	monia-L-green	CS+SCRB	MGO+CCS
Bulk car	riers								
(GWF	100				

Individual with breakdown of contributions

Aggregate result for comparison of different cases

OSINTEF

NTNU

Methane nearly offsets CO2 reductions

HFO		LNG LP LN	IG HP	Methanol	Ammonia-C-blue	Am	monia-L-green	CS+SCRB	MGO+CCS
Bulk ca	arriers								
				GWI	P100				

Individual with breakdown of contributions

Aggregate result for comparison of different cases

DNTNU

OSINTEF

Reduction of NOx emissions by half increase the CI

HFO		LNG LP LN	G HP Methanol	Ammonia-C-blue	Ammonia-L-green	HFO+CCS+SCRB	MGO+CCS
Bulk c	arriers						
		GWP20	GV	VP100			

Individual with breakdown of contributions

Aggregate result for comparison of different cases

OSINTEF

(Fossil) Methanol within range of conventional fuels

HFO		LNG LP L	NG HP Methanol	Ammonia-C-blue	Ammonia-L-green	HFO+CCS+SCRB	MGO+CCS
Bulk ca	arriers			Liquefied gas			
			O GV	VP100			

Individual with breakdown of contributions

Aggregate result for comparison of different cases

OSINTEF

Effect of high upstream and N₂O emissions

HFO		LNG LP	LNG HP	Methanol	Ammonia-C-blue	Ammonia-L-green	HFO+CCS+SCR	B MGO+CCS
Bulk c	arriers							
				GV	VP100			

Individual with breakdown of contributions

Aggregate result for comparison of different cases

OSINTEF

Green ammonia and halving of N₂O closer to net-zero

HFO		LNG LP	LNG HP	Methanol	Ammonia-C-blue	Ammonia-L-green	HFO+CCS+SCRB	MGO+CCS
Bulk ca	arriers							
				GW	P100			

Individual with breakdown of contributions

Aggregate result for comparison of different cases

OSINTEF

NOx emissions lead to a negative impact with CCS

HFO		LNG LP	LNG HP	Methanol	Ammonia-C-blue	Ammonia-L-green	HFO+CCS+SCRB	MGO+CCS
Bulk ca	arriers							
				GW	P100			

Individual with breakdown of contributions

Aggregate result for comparison of different cases

OSINTEF

Same as MGO

HFO		LNG LP	LNG HP	Methanol	Ammonia-C-blue	Ammonia-L-gr	HFO+CCS+SCRB	MGO+CCS
Bulk ca	arriers							
				GWI	P100		GT	

Individual with breakdown of contributions

Aggregate result for comparison of different cases

SINTEF

IMO Seaweb Maridata

Motivation Model architecture Data overview Results Discussion Model capabilities Final remarks

Ship type: General cargo

Difference to the IMO GHG study in terms of DWT Bulk dry: +3.14% Container: +0.56%

DNTNU

OSINTEF

IMO Seaweb Maridata

Difference to the IMO GHG study in terms of DWT Oil tankers: -4.11% Chemical: -4.14% **Global fleet: +5.83%**

DNTNU

OSINTEF

Ammonia LCA

Blue H2 ATR 95+% CC							
	Inputs						
СС	95 %						
Thermal effiency	75 %						
NG feedstock	3.23kg NG/kg H2						
Carbon	2.42kg C/kgH2						
CH4 leakage (upstream)	0.10 %						
Electricity ATR	3.5kWh/kg H2						
Electricity HB+ASU	0.75kWh/kgNH3						
H2	178kg/ton NH3						
N2	822kg/ton NH3						
Emission factors							
NG upstream	12.0gCO2/MJ LNG						
Electricity ATR	120gCO2/kWh						
Electricity HB+ASU	120gCO2/kWh						
Emissions							
H2 LNG upstream	1.79kgCO2eq/kg H2						
H2 electricity	0.42kgCO2eq/kg H2						
H2 on-site	0.44kgCO2eq/kg H2						
H2	2.66kgCO2eq/kg H2						
	22.13gCO2eq/MJ H2						
NH3 synthesis	0.09kgCO2eq/kg NH3						
Total	0.55kgCO2eq/kg NH3						
	24.30gCO2eq/MJ NH3						

Green NH3 via water electrolysis								
Inputs								
Electrolyzer	55kWh/kg H2							
Electricity HB+ASU	0.75kWh/kg NH3							
H2	178kg/ton NH3							
N2	822kg/ton NH3							
Emiss	sion factors							
Electricity electrolysis	12gCO2/kWh							
Electricity HB+ASU	12gCO2/kWh							
Er	nissions							
Total	0.12648kgCO2eq/kg NH3							
TOtal	5.62gCO2eq/MJ NH3							

ONTNU () SINTEF

	WTT (g/MJ)		MJ)		
	CO2eq	CO2	CH4	N2O	CO2eq
HFO	9.4	4.5E+11	7.5E+06	2.3E+07	4.5E+11
HFO+CCS+Scrubbers	9.4	2.7E+11	7.5E+06	2.3E+07	2.7E+11
MGO	13.9	4.4E+11	7.5E+06	2.3E+07	4.4E+11
MGO+CCS	13.9	2.6E+11	7.5E+06	2.3E+07	2.7E+11
LNG LP	17.9	3.2E+11	2.5E+09	1.6E+07	4.0E+11
LNG HP	17.9	3.0E+11	3.7E+08	2.3E+07	3.2E+11
Methanol	30.5	4.3E+11	8.1E+07	5.3E+06	4.3E+11
Ammonia Blue	24.3	0.0E+00	8.0E+07	5.0E+08	1.3E+11
Ammonia Green	5.62	0.0E+00	8.0E+07	2.5E+08	6.8E+10

■ NTNU ③ SINTEF

	WtT	TtW	WtT	Comparison
	g/kWh	g/kWh	g/kWh	
HFO	67.7	605.2	672.9	100 %
HFO+CCS+Scrubbers	67.7	366.5	434.2	65 %
MGO	100.1	594.7	694.7	103 %
MGO+CCS	100.1	360.1	460.2	68 %
LNG LP	128.9	532.6	661.5	98 %
LNG HP	128.9	426.8	555.7	83 %
Methanol	219.6	576.2	795.8	118 %
Ammonia Blue	175.0	179.2	354.2	53 %
Ammonia Green	40.5	91.1	131.6	20 %

Norwegian Earth System Model

NTNU SINTEF

Experimental set-up

- Time-Slice Experiment: a specific time period or "slice" of the climate system is simulated. The model is run for a specific time slice, here representing the year 2019.
- The model focuses on simulating the climate conditions for those specific time periods while assuming that the "boundary conditions" (e.g., sea surface temperatures, greenhouse gas and aerosol emissions) are constant.

NorESM2 simulations:

- 1. Control simulation: 2019 'forcings' without any emissions from the shipping sector.
- 2. MariTeam shipping emissions: All 2019 emissions, including emissions from shipping activities in 2019, as calculated by the MariTEAM model.

MariTeam Nor

Introduction to NorESM2: The Norwegian Earth System Model

- The Norwegian Earth System Model, NorESM2, is a comprehensive Earth system model designed to simulate the Earth's climate system. Developed by the NorESM Climate Modeling Consortium (NCC) since 2007 in collaboration between the Norwegian Meteorological Institute, the University of Oslo, NTNU, the University of Bergen, NORCE Norwegian Research Centre AS, CICERO, and Nansen Environmental and Remote Sensing Center (NERSC).
- It solves many coupled differential equations across a broad set of natural laws on a threedimensional grid. It incorporates state-of-the-art physics and chemistry to simulate the complex interactions between different components of the Earth's system, allowing the study of how changes in one component affect the others.
- NorESM has contributed towards the reports of the IPCC and is well established within the international climate research community.

The NorESM2 components

- Atmosphere Model (CAM6-Nor): The atmospheric component is based on the Community Atmosphere Model version 6 (CAM6) but includes specific modifications that address atmospheric chemistry, aerosols, and clouds using the OsloAero6 module and improve energy and angular momentum conservation.
- Ocean Model (BLOM): the Bergen Layered Ocean Model (BLOM) is an isopycnic coordinate ocean model. It incorporates detailed simulations of ocean dynamics, including deep convection in the Southern Ocean, important for energy transport in the climate system.
- Sea Ice Model (CICE): simulates the behavior of sea ice, including the wind drift of snow over sea ice, and impacts of deposition of e.g., soot.
- Land Model (CLM5): represents terrestrial processes such as vegetation dynamics, surface energy balance, and carbon, nitrogen and water cycles.
- Biogeochemical Model (iHAMOCC): the Hamburg Ocean Carbon Cycle model (HAMOCC) is integrated with the isopycnic ocean model BLOM. This biogeochemical model simulates the ocean's carbon cycle and its interactions with the atmosphere, including the uptake and release of carbon dioxide.

Seland et al. (2020)

SINTEF

NorESM2-MM discretization:

- 1-degree latitude and longitude resolution.
- NorESM2-MM operates using specific time steps for components:
 - Atmosphere and Land: 20 minutes. the
 - Ocean and sea ice: 1 hour.
- Ocean uses tripolar gridding with isopycninc vertical coordinates, and the atmosphere finite volume with terrain-following sigma coordinates in the vertical.
- This allows NorESM2-MM to capture a wide range of climate phenomena and interactions within the Earth system, providing valuable insights into climate dynamics, projections, and potential impacts.
- Makes use of national high-performance computing (HPC) and mass storage infrastructure.
- Takes ~20-24 hours to simulate 10 years. Generates multiple TB of data.

Benchmarking of NorESM

CMIP6: The evolution of the surface air temperature in the historical simulations and under the four SSP scenarios for NorESM2-MM, using a 5-year running mean. The model is close to the Multi-model median of the CMIP6 models that contributed to AR6 of IPCC. (Seland et al., 2020)

ERFs for Aerosol Species

NorESM is within observational and multi-model range with its calculations of effective radiative forcing from aerosol emissions. (Thornhill et al., 2021)

SINTEF

S MariTeam

ONTNU 🕥 SINTEF

EXPLORING THE CLIMATE IMPACT POTENTIALS OF A SHIP SEGMENT FOR DIFFERENT FUELS

□ NTNU () SINTEF

We have calculated results for 8 fuels across 6 ship segments x 6 size bins

We will show aggregate results for two segments and all fuels. We will also demonstrate how we can deep dive into details of results for different size bins.

Metrics Matters

CO₂ equivalents as Global Warming Potential (GWP) CO₂ equivalents as Global Temperature Potential (GTP)

The energy absorbed over a time horizon by a unit release of a given GHG relative to CO2.

The change in global mean surface temperature, by a unit release of a given GHG relative to CO2, at a given future time.

SIN

Both selections of time-horizon and choice of metric are debated in the literature.

We have calculated results with different metrics for different time horizons. We will show our examples today using GWP100, but also show an aggregate comparison with GTP100

ATTENTION: Without NOx

EXPLORING THE CLIMATE IMPACT POTENTIALS OF A SHIP SEGMENT FOR DIFFERENT FUELS

□ NTNU () SINTEF

We have calculated results for 8 fuels across 6 ship segments x 6 size bins

We will show aggregate results for two segments and all fuels. We will also demonstrate how we can deep dive into details of results for different size bins.

Metrics Matters

CO₂ equivalents as Global Warming Potential (GWP) CO₂ equivalents as Global Temperature Potential (GTP)

The energy absorbed over a time horizon by a unit release of a given GHG relative to CO2.

The change in global mean surface temperature, by a unit release of a given GHG relative to CO2, at a given future time.

SIN

Both selections of time-horizon and choice of metric are debated in the literature.

We have calculated results with different metrics for different time horizons. We will show our examples today using GWP100, but also show an aggregate comparison with GTP100

